Jumat, 14 November 2014

Sejarah Kartografi



Cartography

 

 

"Mapmaker" redirects here. For other uses, see Mapmaker (disambiguation).
"Cartographer" redirects here. For the album by E.S. Posthumus, see Cartographer.


The oldest original cartographic artifact in the Library of Congress: a nautical chart of the Mediterranean Sea. Second quarter of the fourteenth century.
Cartography (in Greek chartis = map and graphein = write) is the study and practice of making geographical maps. Combining science, aesthetics, and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively.
The fundamental problems of cartography are to:
  • Set the map's agenda and select traits of the object to be mapped. This is the concern of map editing. Traits may be physical, such as roads or land masses, or may be abstract, such as toponyms or political boundaries.
  • Represent the terrain of the mapped object on flat media. This is the concern of map projections.
  • Eliminate characteristics of the mapped object that are not relevant to the map's purpose. This is the concern of generalization.
  • Reduce the complexity of the characteristics that will be mapped. This is also the concern of generalization.
  • Orchestrate the elements of the map to best convey its message to its audience. This is the concern of map design.

 

 

 

A. History

Copy (1475) of St. Isidore's TO map of the world.
The earliest known map is a matter of some debate, both because the definition of "map" is not sharp and because some artifacts speculated to be maps might actually be something else. A wall painting, which may depict the ancient Anatolian city of Çatalhöyük (previously known as Catal Huyuk or Çatal Hüyük), has been dated to the late 7th millennium BCE.[1][2] Other known maps of the ancient world include the Minoan “House of the Admiral” wall painting from c. 1600 BCE, showing a seaside community in an oblique perspective and an engraved map of the holy Babylonian city of Nippur, from the Kassite period (14th – 12th centuries BCE).[3]
The ancient Greeks and Romans created maps, beginning at latest with Anaximander in the 6th century BC.[4] In the 2nd century AD, Ptolemy produced his treatise on cartography, Geographia. [5] This contained Ptolemy's world map - the world then known to Western society (Ecumene). As early as the 700s, Arab scholars were translating the works of the Greek geographers into Arabic.[6]
In ancient China, geographical literature spans back to the 5th century BC. The oldest extant Chinese maps come from the State of Qin, dated back to the 4th century BC, during the Warring States Period. In the book of the Xin Yi Xiang Fa Yao, published in 1092 by the Chinese scientist Su Song, a star map on the equidistant cylindrical projection.[7][8] Although this method of charting seems to have existed in China even prior to this publication and scientist, the greatest significance of the star maps by Su Song, is that they represent the oldest existent star maps in printed form.
Early forms of cartography of India included legendary paintings; maps of locations described in Indian epic poetry, for example, the Ramayana.[9] Indian cartographic traditions also covered the locations of the Pole star, and other constellations of use.[10] These charts may have been in use by the beginning of the Common Era for purposes of navigation.[10]
Mappa mundi is the general term used to describe Medieval European maps of the world. Approximately 1,100 mappae mundi are known to have survived from the Middle Ages. Of these, some 900 are found illustrating manuscripts and the remainder exist as stand-alone documents (Woodward, p. 286).

The Arab geographer, Muhammad al-Idrisi, produced his medieval atlas Tabula Rogeriana in 1154. He incorporated the knowledge of Africa, the Indian Ocean and the Far East, gathered by Arab merchants and explorers with the information inherited from the classical geographers to create the most accurate map of the world up until his time. It remained the most accurate world map for the next three centuries.[11]
In the Age of Exploration, from the 15th century to the 17th century, European cartographers both copied earlier maps (some of which had been passed down for centuries) and drew their own based on explorers' observations and new surveying techniques. The invention of the magnetic compass, telescope and sextant enabled increasing accuracy. In 1492, Martin Behaim, a German cartographer, made the oldest extant globe of the Earth.[12]
Johannes Werner refined and promoted the Werner map projection. In 1507, Martin Waldseemüller produced a globular world map and a large 12-panel world wall map (Universalis Cosmographia) bearing the first use of the name "America". Portuguese cartographer, Diego Ribero, was author of the first known planisphere with a graduated Equator (1527). Italian cartogapher Battista Agnese produced at least 71 manuscript atlases of sea charts.
Due to the sheer physical difficulties inherent in cartography, map-makers frequently lifted material from earlier works without giving credit to the original cartographer. For example, one of the most famous early maps of North America is unofficially known as the "Beaver Map", published in 1715 by Herman Moll. This map is an exact reproduction of a 1698 work by Nicolas de Fer. De Fer in turn had copied images that were first printed in books by Louis Hennepin, published in 1697, and François Du Creux, in 1664. By the 1700s, map-makers started to give credit to the original engraver by printing the phrase "After [the original cartographer]" on the work.

The oldest original cartographic artifact in the Library of Congress: a nautical chart of the Mediterranean Sea - second quarter of the fourteenth century Cartography (from Greek χάρτης chartis, "map"; and γράφειν graphein, "write"), or mapmaking, has been an integral part of the human story for a long time, possibly up to 8,000 years.[1] From cave paintings to ancient maps of Babylon, Greece, and Asia, through the Age of Exploration, and on into the twenty-first century, people have created and used maps as the essential tools to help them define, explain, and navigate their way through the world. According to some scholars,[who?] mapping represented a significant step forward in the intellectual development of human beings and it serves as a record of the advancement of knowledge of the human race, which could be passed from members of one generation to those that follow in the development of culture. Maps began as two dimensional drawings. Although that remains the nature of most maps, modern graphics have enabled projections beyond that.

 

B. Earliest known maps

The earliest known maps are of the heavens, not the earth. Dots dating to 16,500 BCE found on the walls of the Lascaux caves map out part of the night sky, including the three bright stars Vega, Deneb, and Altair (the Summer Triangle asterism), as well as the Pleiades star cluster. The Cuevas de El Castillo in Spain contain a dot map of the Corona Borealis constellation dating from 12,000 BCE.[2][3][4]
Cave painting and rock carvings used simple visual elements that may have aided in recognizing landscape features, such as hills or dwellings.[5] A map-like representation of a mountain, river, valleys and routes around Pavlov in the Czech Republic has been dated to 25,000 BP, and a 14,000 BP polished chunk of sandstone from a cave in Spanish Navarre may represent similar features superimposed on animal etchings, although it may also represent a spiritual landscape, or simple incisings.[6][7]
Another ancient picture that resembles a map was created in the late 7th millennium BCE in Çatalhöyük, Anatolia, modern Turkey. This wall painting may represent a plan of this Neolithic village; [8] however, recent scholarship has questioned the identification of this painting as a map.[9]
Whoever visualized the Çatalhöyük "mental map" may have been encouraged by the fact that houses in Çatalhöyük were clustered together and were entered via flat roofs. Therefore, it was normal for the inhabitants to view their city from a bird's eye view. Later civilizations followed the same convention; today, almost all maps are drawn as if we are looking down from the sky instead of from a horizontal or oblique perspective. The logical advantage of such a perspective is that it provides a view of a greater area, conceptually. There are exceptions: one of the "quasi-maps" of the Minoan civilization on Crete, the “House of the Admiral” wall painting, dating from c. 1600 BCE, shows a seaside community in an oblique perspective.

C. Ancient Near East

Maps in Ancient Babylonia were made by using accurate surveying techniques. For example, a 7.6 × 6.8 cm clay tablet found in 1930 at Ga-Sur, near contemporary Kirkuk, shows a map of a river valley between two hills. Cuneiform inscriptions label the features on the map, including a plot of land described as 354 iku (12 hectares) that was owned by a person called Azala. Most scholars date the tablet to the twenty-fifth to twenty-fourth century BCE; Leo Bagrow dissents with a date of 3800 BCE.[page needed] Hills are shown by overlapping semicircles, rivers by lines, and cities by circles. The map also is marked to show the cardinal directions.[1]
An engraved map from the Kassite period (fourteenthtwelfth centuries BCE) of Babylonian history shows walls and buildings in the holy city of Nippur.[11]
In contrast, the Babylonian World Map, the earliest surviving map of the world (c. 600 BCE), is a symbolic, not a literal representation. It deliberately omits peoples such as the Persians and Egyptians, who were well known to the Babylonians. The area shown is depicted as a circular shape surrounded by water, which fits the religious image of the world in which the Babylonians believed.
Examples of maps from ancient Egypt are quite rare, however, those that have survived show an emphasis on geometry and well developed surveying techniques, perhaps stimulated by the need to re-establish the exact boundaries of properties after the annual Nile floods. The Turin Papyrus Map, dated c. 1300 BCE, shows the mountains east of the Nile where gold and silver were mined, along with the location of the miners' shelters, wells, and the road network that linked the region with the mainland. Its originality can be seen in the map's inscriptions, its precise orientation, and the use of colour.

D. Ancient Greece

1. Early Greek Literature

In reviewing the literature of early geography and early conceptions of the earth, all sources lead to Homer, who is considered by many (Strabo, Kish, and Dilke) as the founding father of Geography. Regardless of the doubts about Homer's existence, one thing is certain: he never was a mapmaker. The enclosed map, which represents the conjectural view of the Homeric world, was never created by him. It is an imaginary reconstruction of the world as Homer described it in his two poems the Iliad and the Odyssey. It is worth mentioning that each of these writings involves strong geographic symbolism. They can be seen as descriptive pictures of life and warfare in the Bronze Age and the illustrated plans of real journeys. Thus, each one develops a philosophical view of the world, which makes it possible to show this information in the form of a map.
The depiction of the earth conceived by Homer, which was accepted by the early Greeks, represents a circular flat disk surrounded by a constantly moving stream of Ocean (Brown, 22), an idea which would be suggested by the appearance of the horizon as it is seen from a mountaintop or from a seacoast. Homer's knowledge of the Earth was very limited. He and his Greek contemporaries knew very little of the earth beyond Egypt as far south as the Libyan desert, the south-west coast of Asia Minor, and the northern boundary of the Greek homeland. Furthermore, the coast of the Black Sea was only known through myths and legends that circulated during his time. In his poems there is no mention of Europe and Asia as geographical concepts (Thompson, 21), and no mention of the Phoenicians either (Thompson, 40). This seems strange if we recall that the origin of the name Oceanus, a term used by Homer in his poems, belonged to the Phoenicians (Thomson, 27). That is why the big part of Homer's world that is portrayed on this interpretive map represents lands that border on the Aegean Sea. It is worth noting that even through Greeks believed that they were in the middle of the earth, they also thought that the edges of the world's disk were inhabited by savage, monstrous barbarians and strange animals and monsters; Homer's Odyssey mentions a great many of them.
Additional statements about ancient geography may be found in Hesiod's poems, probably written during the eighth century BCE (Kirsh, 1). Through the lyrics of Works and Days and Theogony he shows to his contemporaries some definite geographical knowledge. He introduces the names of such rivers as Nile, Ister (Danube), the shores of the Bosporus, and the Euxine (Black Sea), the coast of Gaul, the island of Sicily, and a few other regions and rivers (Keane, 6–7). His advanced geographical knowledge not only had predated Greek colonial expansions, but also was used in the earliest Greek world maps, produced by Greek mapmakers such as Anaximander and Hecataeus of Miletus.

2. Early Greek maps

In classical antiquity, maps were drawn by Anaximander, Hecataeus of Miletus, Herodotus, Eratosthenes, and Ptolemy using both observations by explorers and a mathematical approach.
Early steps in the development of intellectual thought in ancient Greece belonged to Ionians from their well-known city of Miletus in Asia Minor. Miletus was placed favourably to absorb aspects of Babylonian knowledge and to profit from the expanding commerce of the Mediterranean. The earliest ancient Greek who is said to have constructed a map of the world is Anaximander of Miletus (c. 611–546 BCE), pupil of Thales. He believed that the earth was a cylindrical form, like a stone pillar and suspended in space.[12] The inhabited part of his world was circular, disk-shaped, and presumably located on the upper surface of the cylinder (Brown, 24).
Apparently, Anaximander was the first ancient Greek to draw a map of the known world. It is for this reason that he is considered by many to be the first mapmaker (Dilke, 23). A scarcity of archaeological and written evidence prevents us from giving any assessment of his map. What we may presume is that he portrayed land and sea in a map form. Unfortunately, any definite geographical knowledge that he included in his map is lost as well. Although the map has not survived, Hecataeus of Miletus (550–475 BCE) produced another map fifty years later that he claimed was an improved version of the map of his illustrious predecessor.


The world according to Hekatæus, 500 BCE
Hecatæus's map describes the earth as a circular plate with an encircling Ocean and Greece in the centre of the world. This was a very popular contemporary Greek worldview, derived originally from the Homeric poems. Also, similar to many other early maps in antiquity his map has no scale. As units of measurements, this map used "days of sailing" on the sea and "days of marching" on dry land (Goode, 2). The purpose of this map was to accompany Hecatæus's geographical work that was called Periodos Ges, or Journey Round the World (Dilke, 24). Periodos Ges was divided into two books, "Europe" and "Asia", with the latter including Libya, the name of which was an ancient term for all of the known Africa.
The work follows the assumption of the author that the world was divided into two continents, Asia and Europe. He depicts the line between the Pillars of Hercules through the Bosporus, and the Don River as a boundary between the two. Hecatæus is the first known writer who thought that the Caspian flows into the circumference ocean—an idea that persisted long into the Hellenic period. He was particularly informative on the Black Sea, adding many geographic places that already were known to Greeks through the colonization process. To the north of the Danube, according to Hecatæus, were the Rhipæan (gusty) Mountains, beyond which lived the Hyperboreans—peoples of the far north. Hecatæus depicted the origin of the Nile River at the southern circumference ocean. His view of the Nile seems to have been that it came from the southern circumference ocean. This assumption helped Hecatæus solve the mystery of the annual flooding of the Nile. He believed that the waves of the ocean were a primary cause of this occurrence (Tozer, 63). It is worth mentioning that a similar map based upon one designed by Hecataeus was intended to aid political decision-making. According to Herodotus, it was engraved upon a bronze tablet and was carried to Sparta by Aristagoras during the revolt of the Ionian cities against Persian rule from 499 to 494 BCE.
The world according to Anaximenes, c. 500 BCE
Anaximenes of Miletus (6th century BCE), who studied under Anaximander, rejected the views of his teacher regarding the shape of the earth and instead, he visualized the earth as a rectangular form supported by compressed air. What is interesting here is that his incorrect idea about the shape of the world somehow persisted in the form of how the contemporary maps are presented today. Most current maps are limited to this rectangular shape (i.e. border of the map (neatline), computer screen, or document page).
Pythagoras of Samos (c. 560–480 BCE) speculated about the notion of a spherical earth with a central fire at its core. He is also credited with the introduction of a model that divides a spherical earth into five zones. One hot, two temperate, and two cold—northern and southern. It seems likely that he illustrated his division in the form of a map, however, no evidence of this has survived to the present.
Scylax, a sailor, made a record of his Mediterranean voyages in c. 515 BCE. This is the earliest known set of Greek periploi, or sailing instructions, which became the basis for many future mapmakers, especially in the medieval period.[13]
The way in which the geographical knowledge of the Greeks advanced from the previous assumptions of the Earth's shape was through Herodotus and his conceptual view of the world. This map also did not survive and many have speculated that it was never produced. A possible reconstruction of his map is displayed below.
The world according to Herodotus, 440 BCE
Herodotus traveled very extensively, collecting information and documenting his findings in his books on Europe, Asia, and Libya. He also combined his knowledge with what he learned from the people he met. Herodotus wrote his Histories in the mid-400s BCE. Although his work was dedicated to the story of long struggle of the Greeks with the Persian Empire, Herodotus also included everything he knew about the geography, history, and peoples of the world. Thus, his work provides a detailed picture of the known world of the fifth century BCE.
Herodotus rejected the prevailing view of most fifth century maps that the earth is a circular plate surrounded by Ocean. In his work he describes the earth as an irregular shape with oceans surrounding only Asia and Africa. He introduces names such as the Atlantic Sea and the Erythrean Sea. He also divided the world into three continents: Europe, Asia, and Africa. He depicted the boundary of Europe as the line from the Pillars of Hercules through the Bosporus and the area between Caspian Sea and Indus River. He regarded the Nile as the boundary between Asia and Africa. He speculated that the extent of Europe was much greater than was assumed at the time and left Europe's shape to be determined by future research.
In the case of Africa, he believed that, except for the small stretch of land in the vicinity of Suez, the continent was in fact surrounded by water. However, he definitely disagreed with his predecessors and contemporaries about its presumed circular shape. He based his theory on the story of Pharaoh Necho II, the ruler of Egypt between 609 and 594 BCE, who had sent Phoenicians to circumnavigate Africa. Apparently, it took them three years, but they certainly did prove his idea. He speculated that the Nile River started as far west as the Ister River in Europe and cut Africa through the middle. He was the first writer to assume that the Caspian Sea was separated from other seas and he recognised northern Scythia as one of the coldest inhabited lands in the world.
Similar to his predecessors, Herodotus also made mistakes. He accepted a clear distinction between the civilized Greeks in the centre of the earth and the barbarians on the world's edges. In his Histories we can see very clearly that he believed that the world became stranger and stranger when one traveled away from Greece, until one reached the ends of the earth, where humans behaved as savages.

3. Spherical Earth and Meridians

Whereas a number of previous Greek philosophers presumed the earth to be spherical, Aristotle (384–322 BCE) is the one to be credited with proving the Earth's sphericity. Those arguments may be summarized as follows:
  • The lunar eclipse is always circular
  • Ships seem to sink as they move away from view and pass the horizon
  • Some stars can be seen only from certain parts of the Earth.
A vital contribution to mapping the reality of the world came with a scientific estimate of the circumference of the earth. This event has been described as the first scientific attempt to give geographical studies a mathematical basis. The man credited for this achievement was Eratosthenes (275–195 BCE). As described by George Sarton, historian of science, “there was among them [Eratosthenes's contemporaries] a man of genius but as he was working in a new field they were too stupid to recognize him” (Noble, 27). His work, including On the Measurement of the Earth and Geographica, has only survived in the writings of later philosophers such as Cleomedes and Strabo. He was a devoted geographer who set out to reform and perfect the map of the world. Eratosthenes argued that accurate mapping, even if in two dimensions only, depends upon the establishment of accurate linear measurements. He was able to calculate the circumference of the Earth within 0.5 percent accuracy by calculating the heights of shadows on different parts of the Egypt at a given time. The first in Alexandria, the other further up the Nile, where reports of a well into which the sun shone only at midsummer, long existed. Proximity to the equator being the dynamics creating the effect. He had the distance between the two shadows calculated and then their height. From this he determined the difference in angle between the two points and calculated how large a circle would be made by adding in the rest of the degrees to 360. His great achievement in the field of cartography was the use of a new technique of charting with meridians, his imaginary north–south lines, and parallels, his imaginary west–east lines.[14] These axis lines were placed over the map of the earth with their origin in the city of Rhodes and divided the world into sectors. Then, Eratosthenes used these earth partitions to reference places on the map. He also was the first person to divide Earth correctly into five climatic regions: a torrid zone across the middle, two frigid zones at extreme north and south, and two temperate bands in between. He was also the first person to use the word "geography".
Claudius Ptolemy (90–168 CE) thought that, with the aid of astronomy and mathematics, the earth could be mapped very accurately. Ptolemy revolutionized the depiction of the spherical earth on a map by using perspective projection, and suggested precise methods for fixing the position of geographic features on its surface using a coordinate system with parallels of latitude and meridians of longitude.[5][15]
Ptolemy's eight-volume atlas Geographia is a prototype of modern mapping and GIS. It included an index of place-names, with the latitude and longitude of each place to guide the search, scale, conventional signs with legends, and the practice of orienting maps so that north is at the top and east to the right of the map—a universal custom today. Yet with all his important innovations, however, Ptolemy was not infallible. His most important error was a miscalculation of the circumference of the earth. He believed that Eurasia covered 180° of the globe, which convinced Christopher Columbus to sail across the Atlantic to look for a simpler and faster way to travel to India. Had Columbus known that the true figure was much greater, it is conceivable that he would never have set out on his momentous voyage.

4. Roman Empire

In 2007, the Tabula Peutingeriana, a 12th century replica of a 5th century map, was placed on the UNESCO Memory of the World Register and displayed to the public for the first time. Although well preserved and believed to be an accurate copy of an authentic original, the scroll media it is on is so delicate now it must be protected at all times from exposure to daylight.[16]

5. China

a. Earliest extant maps from the Qin State

The earliest known maps to have survived in China date to the 4th century BCE.[17] In 1986, seven ancient Chinese maps were found in an archeological excavation of a Qin State tomb in what is now Fangmatian, Dangchuan Xian, in the vicinity of Tianshui City, Gansu province.[17] Before this find, the earliest extant maps that were known came from the Mawangdui excavation in 1973, which found three maps on silk dated to the 2nd century BCE in the early Han Dynasty.[17][18] The 4th century BCE maps from the State of Qin were drawn with black ink on wooden blocks.[19] These blocks fortunately survived in soaking conditions due to underground water that had seeped into the tomb; the quality of the wood had much to do with their survival.[19] After two years of slow-drying techniques, the maps were fully restored.[19]
The territory shown in the seven Qin maps overlap each other.[20] The maps display tributary river systems of the Jialing River in Sichuan province, in a total measured area of 107 by 68 km.[20] The maps featured rectangular symbols encasing character names for the locations of administrative counties.[20] Rivers and roads are displayed with similar line symbols; this makes interpreting the map somewhat difficult, although the labels of rivers placed in order of stream flow are helpful to modern day cartographers.[21] These maps also feature locations where different types of timber can be gathered, while two of the maps state the distances in mileage to the timber sites.[18] In light of this, these maps are perhaps the oldest economic maps in the world since they predate Strabo's economic maps.[18]

b. Earliest geographical writing

In China, the earliest known geographical Chinese writing dates back to the 5th century BCE, during the beginning of the Warring States (481–221 BCE).[22] This was the 'Yu Gong' ('Tribute of Yu') chapter of the book Shu Jing (Classic of History). The book describes the traditional nine provinces, their kinds of soil, their characteristic products and economic goods, their tributary goods, their trades and vocations, their state revenues and agricultural systems, and the various rivers and lakes listed and placed accordingly.[22] The nine provinces in the time of this geographical work was very small in terrain size compared to what modern China occupies today. In fact, its description pertained to areas of the Yellow River, the lower valleys of the Yangtze, with the plain between them and the Shandong Peninsula, and to the west the most northern parts of the Wei River and the Han River were known (along with the southern parts of modern day Shanxi province).[22]

c. Earliest known reference to a map, or 'tu'

The oldest reference to a map in China comes from the 3rd century BCE.[23] This was the event of 227 BCE where Crown Prince Dan of Yan had his assassin Jing Ke visit the court of the ruler of the State of Qin, who would become Qin Shi Huang (r. 221–210 BCE). Jing Ke was to present the ruler of Qin with a district map painted on a silk scroll, rolled up and held in a case where he hid his assassin's dagger.[23] Handing to him the map of the designated territory was the first diplomatic act of submitting that district to Qin rule.[23] Instead he attempted to kill Qin, an assassination plot that failed. From then on maps are frequently mentioned in Chinese sources.[24]

Han Dynasty and period of division

An early Western Han Dynasty (202 BC – 9 AD) silk map found in tomb 3 of Mawangdui, depicting the Kingdom of Changsha and Kingdom of Nanyue in southern China (note: the south direction is oriented at the top, north at the bottom).
The three Han Dynasty maps found at Mawangdui differ from the earlier Qin State maps. While the Qin maps place the cardinal direction of north at the top of the map, the Han maps are orientated with the southern direction at the top.[18] The Han maps are also more complex, since they cover a much larger area, employ a large number of well-designed map symbols, and include additional information on local military sites and the local population.[18] The Han maps also note measured distances between certain places, but a formal graduated scale and rectangular grid system for maps would not be used—or at least described in full—until the 3rd century (see Pei Xiu below).[25] Among the three maps found at Mawangdui was a small map representing the tomb area where it was found, a larger topographical map showing the Han's borders along the subordinate Kingdom of Changsha and the Nanyue kingdom (of northern Vietnam and parts of modern Guangdong and Guangxi), and a map which marks the positions of Han military garrisons that were employed in an attack against Nanyue in 181 BCE.[26]
An early text that mentioned maps was the Rites of Zhou.[23] Although attributed to the era of the Zhou Dynasty, its first recorded appearance was in the libraries of Prince Liu De (c. 130 BCE), and was compiled and commented on by Liu Xin in the 1st century CE. It outlined the use of maps that were made for governmental provinces and districts, principalities, frontier boundaries, and even pinpointed locations of ores and minerals for mining facilities.[23] Upon the investiture of three of his sons as feudal princes in 117 BCE, Emperor Wu of Han had maps of the entire empire submitted to him.[27]
From the 1st century CE onwards, official Chinese historical texts contained a geographical section (Diliji), which was often an enormous compilation of changes in place-names and local administrative divisions controlled by the ruling dynasty, descriptions of mountain ranges, river systems, taxable products, etc.[28] From the time of the 5th century BCE Shu Jing forward, Chinese geographical writing provided more concrete information and less legendary element. This example can be seen in the 4th chapter of the Huainanzi (Book of the Master of Huainan), compiled under the editorship of Prince Liu An in 139 BCE during the Han Dynasty (202 BCE–202 CE). The chapter gave general descriptions of topography in a systematic fashion, given visual aids by the use of maps (di tu) due to the efforts of Liu An and his associate Zuo Wu.[29] In Chang Chu's Hua Yang Guo Chi (Historical Geography of Szechuan) of 347 CE, not only rivers, trade routes, and various tribes were described, but it also wrote of a 'Ba Jun Tu Jing' ('Map of Szechuan'), which had been made much earlier in 150 CE.[30]
Local mapmaking such as the one of Szechuan mentioned above, became a widespread tradition of Chinese geographical works by the 6th century, as noted in the bibliography of the Sui Shu.[31] It is during this time of the Southern and Northern Dynasties that the Liang Dynasty (502–557 CE) cartographers also began carving maps into stone steles (alongside the maps already drawn and painted on paper and silk).[32]

Pei Xiu, the 'Ptolemy of China'

In the year 267, a Pei Xiu (224–271) was appointed as the Minister of Works by Emperor Wu of Jin, the first emperor of the Jin Dynasty. Pei is best known for his work in cartography. Although map making and use of the grid existed in China before him,[33] he was the first to mention a plotted geometrical grid and graduated scale displayed on the surface of maps to gain greater accuracy in the estimated distance between different locations.[34] Pei outlined six principles that should be observed when creating maps, two of which included the rectangular grid and the graduated scale for measuring distance.[35] Historians compare him to the Greek Ptolemy for his contributions in cartography.[36] However, Howard Nelson states that, although the accounts of earlier cartographic works by the inventor and official Zhang Heng (78–139) are somewhat vague and sketchy, there is ample written evidence that Pei Xiu derived the use of the rectangular grid reference from the maps of Zhang Heng.[37] Robert Temple also asserts that Zhang created a mathematical reference grid for maps before Pei Xiu.[38]
Later Chinese ideas about the quality of maps made during the Han Dynasty and before stem from the assessment given by Pei Xiu, which was not a positive one.[39] Pei Xiu noted that the extant Han maps at his disposal were of little use since they featured too many inaccuracies and exaggerations in measured distance between locations.[39] However, the Qin State maps and Mawangdui maps of the Han era were far superior in quality than those examined by Pei Xiu.[39] It was not until the 20th century that Pei Xiu's 3rd century assessment of earlier maps' dismal quality would be overturned and disproven. The Qin and Han maps did have a degree of accuracy in scale and pinpointed location, but the major improvement in Pei Xiu's work and that of his contemporaries was expressing topographical elevation on maps.[40]

Sui and Tang dynasties

In the year 605, during the Sui Dynasty (581–618), the Commercial Commissioner Pei Ju (547–627) created a famous geometrically gridded map.[32] In 610 CE Emperor Yang of Sui ordered government officials from throughout the empire to document in gazetteers the customs, products, and geographical features of their local areas and provinces, providing descriptive writing and drawing them all onto separate maps, which would be sent to the imperial secretariat in the capital city.[31][41]
The Tang Dynasty (618–907) also had its fair share of cartographers, including the works of Xu Jingzong in 658 CE, Wang Mingyuan in 661 CE, and Wang Zhongsi in 747 CE.[32] Arguably the greatest geographer and cartographer of the Tang period was Jia Dan (730–805), whom Emperor Dezong of Tang entrusted in 785 to complete a map of China with her recently former inland colonies of Central Asia, the massive and detailed work completed in 801 CE, called the Hai Nei Hua Yi Tu (Map of both Chinese and Barbarian Peoples within the (Four) Seas).[32] The map was 30 ft long and 33 ft (10 m) high in dimension, mapped out on a grid scale of 1-inch (25 mm) equaling 100 li (unit) (the Chinese equivalent of the mile/kilometer).[32] Jia Dan is also known for having described the Persian Gulf region with great detail, along with lighthouses that were erected at the mouth of the Persian Gulf by the medieval Iranians in the Abbasid period (refer to article on Tang Dynasty for more).

 Song Dynasty

During the Song Dynasty (960–1279 CE) Emperor Taizu of Song ordered Lu Duosun in 971 CE to update and 're-write all the Tu Jing in the world', which would seem to be a daunting task for one individual, who was sent out throughout the provinces to collect texts and as much data as possible.[31] With the aid of Song Zhun, the massive work was completed in 1010 CE, with some 1566 chapters.[31] The later Song Shi historical text stated (Wade-Giles spelling):
Yuan Hsieh (d. +1220) was Director-General of governmental grain stores. In pursuance of his schemes for the relief of famines he issued orders that each pao (village) should prepare a map which would show the fields and mountains, the rivers and the roads in fullest detail. The maps of all the pao were joined together to make a map of the tu (larger district), and these in turn were joined with others to make a map of the hsiang and the hsien (still larger districts). If there was any trouble about the collection of taxes or the distribution of grain, or if the question of chasing robbers and bandits arose, the provincial officials could readily carry out their duties by the aid of the maps.[31]






The Yu Ji Tu, or Map of the Tracks of Yu Gong, carved into stone in 1137, located in the Stele Forest of Xian. This 3 ft (0.91 m) squared map features a graduated scale of 100 li for each rectangular grid. China's coastline and river systems are clearly defined and precisely pinpointed on the map. Yu Gong is in reference to the Chinese deity described in the geographical chapter of the Classic of History, dated 5th century BCE.
Like the earlier Liang Dynasty stone-stele maps (mentioned above), there were large and intricately carved stone stele maps of the Song period. For example, the 3 ft (0.91 m) squared stone stele map of an anonymous artist in 1137 CE, following the grid scale of 100 li squared for each grid square.[42] What is truly remarkable about this map is the incredibly precise detail of coastal outlines and river systems in China (refer to Needham's Volume 3, Plate LXXXI for an image). The map shows 500 settlements and a dozen rivers in China, and extends as far as Korea and India. On the reverse, a copy of a more ancient map uses grid coordinates in a scale of 1:1,500,000 and shows the coastline of China with great accuracy.[43]
The famous 11th century scientist and polymath statesman Shen Kuo (1031–1095) was also a geographer and cartographer.[44] His largest atlas included twenty three maps of China and foreign regions that were drawn at a uniform scale of 1:900,000.[45] Shen also created a three dimensional raised-relief map using sawdust, wood, beeswax, and wheat paste, while representing the topography and specific locations of a frontier region to the imperial court.[45] Shen Kuo's contemporary, Su Song (1020–1101), was a cartographer who created detailed maps in order to resolve a territorial border dispute between the Song Dynasty and the Liao Dynasty.[46]

Yuan, Ming, and Qing dynasties

The Da Ming hunyi tu map, dating from about 1390, is in multicolour. The horizontal scale is 1:820,000 and the vertical scale is 1:1,060,000.[43]
In 1579, Luo Hongxian published the Guang Yutu atlas, including more than 40 maps, a grid system, and a systematic way of representing major landmarks such as mountains, rivers, roads and borders. The Guang Yutu incorporates the discoveries of naval explorer Zheng He's 15th century voyages along the coasts of China, Southeast Asia, India and Africa.[43]
From the 16th and 17th centuries, several examples survive of maps focused on cultural information. Gridlines are not used on either Yu Shi's Gujin xingsheng zhi tu (1555) or Zhang Huang's Tushu bian (1613); instead, illustrations and annotations show mythical places, exotic foreign peoples, administrative changes and the deeds of historic and legendary heroes.[43] Also in the 17th century, an edition of a possible Tang Dynasty map shows clear topographical contour lines.[47] Although topographic features were part of maps in China for centuries, a Fujian county official Ye Chunji (1532–1595) was the first to base county maps using on-site topographical surveying and observations.[48]
The Korean made Kangnido based on two Chinese maps, which describes the Old World.

India

The pundit (explorer) cartographer Nain Singh Rawat (19th century CE) received a Royal Geographical Society gold medal in 1876.
Main article: Cartography of India
Early forms of cartography in India included legendary paintings; maps of locations described in Indian epic poetry, for example the Ramayana.[49] These works contained descriptions of legendary places, and often even described the nature of the mythological inhabitants of a particular location.[49]
The Indians made maps related to both their holy scriptures, the Puranas, and for astronomy.[49] Indian cartographic traditions also covered the locations of the Pole star, and other constellations of use.[50] These charts may have been in use by the beginning of the Common Era for purposes of navigation.[50]
Detailed maps of considerable length describing the locations of settlements, sea shores, rivers, and mountains were also made.[49] The 8th century scholar Bhavabhuti conceived paintings which indicated geographical regions.[51]
European scholar Francesco I reproduced a number of ancient Indian maps in his magnum opus La Cartografia Antica dell India.[51] Out these maps, two have been reproduced using a manuscript of Lokaprakasa, originally compiled by the polymath Ksemendra (Kashmir, 11th century CE), as a source.[51] The other manuscript, used as a source by Francesco I, is titled Samgrahani.[51] The early volumes of the Encyclopedia Britannica also described cartographic charts made by the Dravidian people of India.[50]
Maps from the Ain-e-Akbari, a Mughal document detailing India's history and traditions, contain references to locations indicated in earlier Indian cartographic traditions.[51] Another map describing the kingdom of Nepal, four feet in length and about two and a half feet in breadth, was presented to Warren Hastings.[49] In this map the mountains were elevated above the surface, and several geographical elements were indicated in different colors.

Islamic cartography

In the Middle Ages, Muslim scholars continued and advanced on the mapmaking traditions of earlier cultures. Most used Ptolemy's methods; but they also took advantage of what explorers and merchants learned in their travels across the Muslim world, from Spain to India to Africa, and beyond in trade relationships with China, and Russia.[13]
An important influence in the development of cartography was the patronage of the Abbasid caliph, al-Ma'mun, who reigned from 813 to 833. He commissioned several geographers to remeasure the distance on earth that corresponds to one degree of celestial meridian. Thus his patronage resulted in the refinement of the definition of the mile used by Arabs (mīl in Arabic) in comparison to the stadion used by Greeks. These efforts also enabled Muslims to calculate the circumference of the earth. Al-Mamun also commanded the production of a large map of the world, which has not survived,[52] though it is known that its map projection type was based on Marinus of Tyre rather than Ptolemy.[53] The first terrestrial globe of the Old World was also constructed in the Muslim world during the Middle Ages,[54] by Muslim astronomers and geographers working under Caliph al-Ma'mun in the 9th century.[55] His most famous geographer was Muhammad ibn Mūsā al-Khwārizmī (see Book on the appearance of the Earth below).
Also in the 9th century, the Persian mathematician and geographer, Habash al-Hasib al-Marwazi, employed the use spherical trigonometry and map projection methods in order to convert polar coordinates to a different coordinate system centred on a specific point on the sphere, in this the Qibla, the direction to Mecca.[56] Abū Rayhān Bīrūnī (973–1048) later developed ideas which are seen as an anticipation of the polar coordinate system.[57] Around 1025 CE, he was the first to describe a polar equi-azimuthal equidistant projection of the celestial sphere.[58]
In the early tenth century, Abū Zayd al-Balkhī, originally from Balkh, founded the "Balkhī school" of terrestrial mapping in Baghdad. The geographers of this school also wrote extensively of the peoples, products, and customs of areas in the Muslim world, with little interest in the non-Muslim realms.[52] The "Balkhī school", which included geographers such as Estakhri, al-Muqaddasi and Ibn Hawqal, produced world atlases, each one featuring a world map and twenty regional maps.[59]
Suhrāb, a late tenth century Muslim geographer, accompanied a book of geographical coordinates with instructions for making a rectangular world map, with equirectangular projection or cylindrical cylindrical equidistant projection.[52] The earliest surviving rectangular coordinate map is dated to the 13th century and is attributed to Hamdallah al-Mustaqfi al-Qazwini, who based it on the work of Suhrāb. The orthogonal parallel lines were separated by one degree intervals, and the map was limited to Southwest Asia and Central Asia. The earliest surviving world maps based on a rectangular coordinate grid are attributed to al-Mustawfi in the 14th or 15th century (who used invervals of ten degrees for the lines), and to Hafiz-i-Abru (d. 1430).[60]
Ibn Battuta (1304–1368?) wrote "Rihlah" (Travels) based on three decades of journeys, covering more than 120,000 km through northern Africa, southern Europe, and much of Asia.

 

 

Technological changes

A pre-Mercator nautical chart of 1571, from Portuguese cartographer Fernão Vaz Dourado (c. 1520-c.1580). It belongs to the so-called plane chart model, where observed latitudes and magnetic directions are plotted directly into the plane, with a constant scale, as if the Earth were plane (Portuguese National Archives of Torre do Tombo, Lisbon).
In cartography, technology has continually changed in order to meet the demands of new generations of mapmakers and map users. The first maps were manually constructed with brushes and parchment; therefore, varied in quality and were limited in distribution. The advent of magnetic devices, such as the compass and much later, magnetic storage devices, allowed for the creation of far more accurate maps and the ability to store and manipulate them digitally.
Advances in mechanical devices such as the printing press, quadrant and vernier, allowed for the mass production of maps and the ability to make accurate reproductions from more accurate data. Optical technology, such as the telescope, sextant and other devices that use telescopes, allowed for accurate surveying of land and the ability of mapmakers and navigators to find their latitude by measuring angles to the North Star at night or the sun at noon.
Advances in photochemical technology, such as the lithographic and photochemical processes, have allowed for the creation of maps that have fine details, do not distort in shape and resist moisture and wear. This also eliminated the need for engraving, which further shortened the time it takes to make and reproduce maps.
Advances in electronic technology in the 20th century ushered in another revolution in cartography. Ready availability of computers and peripherals such as monitors, plotters, printers, scanners (remote and document) and analytic stereo plotters, along with computer programs for visualization, image processing, spatial analysis, and database management, have democratized and greatly expanded the making of maps. The ability to superimpose spatially located variables onto existing maps created new uses for maps and new industries to explore and exploit these potentials. See also: digital raster graphic.
These days most commercial-quality maps are made using software that falls into one of three main types: CAD, GIS and specialized illustration software. Spatial information can be stored in a database, from which it can be extracted on demand. These tools lead to increasingly dynamic, interactive maps that can be manipulated digitally.

 

 

 

 

 

 

Map types

General vs thematic cartography

Small section of an orienteering map.
Topographic map of Easter Island.
In understanding basic maps, the field of cartography can be divided into two general categories: general cartography and thematic cartography. General cartography involves those maps that are constructed for a general audience and thus contain a variety of features. General maps exhibit many reference and location systems and often are produced in a series. For example, the 1:24,000 scale topographic maps of the United States Geological Survey (USGS) are a standard as compared to the 1:50,000 scale Canadian maps. The government of the UK produces the classic 1:63,360 (1 inch to 1 mile) "Ordnance Survey" maps of the entire UK and with a range of correlated larger- and smaller-scale maps of great detail.
Thematic cartography involves maps of specific geographic themes, oriented toward specific audiences. A couple of examples might be a dot map showing corn production in Indiana or a shaded area map of Ohio counties, divided into numerical choropleth classes. As the volume of geographic data has exploded over the last century, thematic cartography has become increasingly useful and necessary to interpret spatial, cultural and social data.
An orienteering map combines both general and thematic cartography, designed for a very specific user community. The most prominent thematic element is shading, that indicates degrees of difficulty of travel due to vegetation. The vegetation itself is not identified, merely classified by the difficulty ("fight") that it presents.

Topographic vs topological

A topographic map is primarily concerned with the topographic description of a place, including (especially in the 20th century) the use of contour lines showing elevation. Terrain or relief can be shown in a variety of ways (see Cartographic relief depiction).
A topological map is a very general type of map, the kind you might sketch on a napkin. It often disregards scale and detail in the interest of clarity of communicating specific route or relational information. Beck's London Underground map is an iconic example. Though the most widely used map of "The Tube," it preserves little of reality. It varies scale constantly and abruptly, it straightens curved tracks, and it contorts directions haphazardly. The only traits the map preserves are the order of the stations and crossings along the tracks and whether a station or crossing is north or south of the River Thames. Yet those are all a typical passenger wishes to know, so the map fulfills its purpose.[14]

Map design

Illustrated map.
Arthur H. Robinson, an American cartographer influential in thematic cartography, stated that a map not properly designed "will be a cartographic failure." He also claimed, when considering all aspects of cartography, that "map design is perhaps the most complex."[15] Robinson codified the mapmaker's understanding that a map must be designed foremost with consideration to the audience and its needs.
From the very beginning of mapmaking, maps "have been made for some particular purpose or set of purposes".[16] The intent of the map should be illustrated in a manner in which the percipient acknowledges its purpose in a timely fashion. The term percipient refers to the person receiving information and was coined by Robinson.[17] The principle of figure-ground refers to this notion of engaging the user by presenting a clear presentation, leaving no confusion concerning the purpose of the map. This will enhance the user’s experience and keep his attention. If the user is unable to identify what is being demonstrated in a reasonable fashion, the map may be regarded as useless.
Making a meaningful map is the ultimate goal. Alan MacEachren explains that a well designed map "is convincing because it implies authenticity" (1994, pp. 9). An interesting map will no doubt engage a reader. Information richness or a map that is multivariate shows relationships within the map. Showing several variables allows comparison, which adds to the meaningfulness of the map. This also generates hypothesis and stimulates ideas and perhaps further research. In order to convey the message of the map, the creator must design it in a manner which will aid the reader in the overall understanding of its purpose. The title of a map may provide the "needed link" necessary for communicating that message, but the overall design of the map fosters the manner in which the reader interprets it (Monmonier, 1993, pp. 93).
In the 21st century it is possible to find a map of virtually anything from the inner workings of the human body to the virtual worlds of cyberspace. Therefore there are now a huge variety of different styles and types of map - for example, one area which has evolved a specific and recognisable variation are those used by public transport organisations to guide passengers, namely urban rail and metro maps, many of which are loosely based on 45 degree angles as originally perfected by Harry Beck and George Dow

Naming conventions

Most maps use text to label places and for such things as a map title, legend and other information. Maps are often made in specific languages, though names of places often differ between languages. So a map made in English may use the name Germany for that country, while a German map would use Deutschland and a French map Allemagne. A word that describes a place, using a non-native terminology or language is referred to as an exonym.
In some cases the proper name is not clear. For example, the nation of Burma officially changed its name to Myanmar, but many nations do not recognize the ruling junta and continue to use Burma. Sometimes an official name change is resisted in other languages and the older name may remain in common use. Examples include the use of Saigon for Ho Chi Minh City, Bangkok for Krung Thep and Ivory Coast for Côte d'Ivoire.
Difficulties arise, when transliteration or transcription between writing systems is required. National names tend to have well established names in other languages and writing systems, such as Russia for Росси́я, but for many placenames a system of transliteration or transcription is required. In transliteration, the symbols of one language are represented by symbols in another. For example, the Cyrillic letter Р is traditionally written as R in the Latin alphabet. Systems exist for transliteration of Arabic, but the results may vary. For example, the Yemeni city of Mocha is written variously in English as Mocha, Al Mukha, al-Mukhā, Mocca and Moka. Transliteration systems are based on relating written symbols to one another, while transcription is the attempt to spell in one language the phonetic sounds of another. Chinese writing is transformed into the Latin alphabet through the Pinyin phonetic transcription systems. Other systems were used in the past, such as Wade-Giles, resulting in the city being spelled Beijing on newer English maps and Peking on older ones.
Further difficulties arise when countries, especially former colonies, do not have a strong national geographic naming standard. In such cases, cartographers may have to choose between various phonetic spellings of local names versus older imposed, sometimes resented, colonial names. Some countries have multiple official languages, resulting in multiple official placenames. For example, the capital of Belgium is both Brussels and Bruxelles. In Canada, English and French are official languages and places have names in both languages. British Columbia is also officially named la Colombie-Britannique. English maps rarely show the French names outside of Quebec, which itself is spelled Québec in French.[18]
The study of placenames is called toponymy, while that of the origin and historical usage of placenames as words is etymology.

Map symbology

The quality of a map’s design affects its reader’s ability to extract information and to learn from the map. Cartographic symbology has been developed in an effort to portray the world accurately and effectively convey information to the map reader. A legend explains the pictorial language of the map, known as its symbology. The title indicates the region the map portrays; the map image portrays the region and so on. Although every map element serves some purpose, convention only dictates inclusion of some elements, while others are considered optional. A menu of map elements includes the neatline (border), compass rose or north arrow, overview map, scale bar, projection and information about the map sources, accuracy and publication.
When examining a landscape, scale can be intuited from trees, houses and cars. Not so with a map. Even such a simple thing as a north arrow is crucial. It may seem obvious that the top of a map should point north, but this might not be the case.
Color, likewise, is equally important. How the cartographer displays the data in different hues can greatly affect the understanding or feel of the map. Different intensities of hue portray different objectives the cartographer is attempting to get across to the audience. Today, personal computers can display up to 16 million distinct colors at a time, even though the human eye can distinguish only a minimum number of these (Jeer, 1997). This fact allows for a multitude of color options for even for the most demanding maps. Moreover, computers can easily hatch patterns in colors to give even more options. This is very beneficial, when symbolizing data in categories such as quintile and equal interval classifications.
Quantitative symbols give a visual measure of the relative size/importance/number that a symbol represents and to symbolize this data on a map, there are two major classes of symbols used for portraying quantitative properties. Proportional symbols change their visual weight according to a quantitative property. These are appropriate for extensive statistics. Choropleth maps portray data collection areas, such as counties or census tracts, with color. Using color this way, the darkness and intensity (or value) of the color is evaluated by the eye as a measure of intensity or concentration (Harvard Graduate School of Design, 2005).

Map generalization

A good map has to provide a compromise between portraying the items of interest (or themes) in the right place for the map scale used, against the need to annotate that item with text or a symbol, which takes up space on the map medium and very likely will cause some other item of interest to be displaced. The cartographer is thus constantly making judgements about what to include, what to leave out and what to show in a slightly incorrect place - because of the demands of the annotation. This issue assumes more importance as the scale of the map gets smaller (i.e the map shows a larger area), because relatively, the annotation on the map takes up more space on the ground. A good example from the late 1980s was the Ordnance Survey's first digital maps, where the absolute positions of major roads shown at scales of 1:1250 and 1:2500 were sometimes a scale distance of hundreds of metres away from ground truth, when shown on digital maps at scales of 1:250000 and 1:625000, because of the overriding need to annotate the features.

Tidak ada komentar:

Posting Komentar